

Demonstrate to a medical student how to interpret ABGs

Westerdless	
Washed hands	
Introduces self	
Checks doctors identity	
Ensures patient is safe in department	
Establishes doctors baseline knowledge and	
expectation for learning session	
Signposts what will be covered during session in	
logical order, e.g.:	
 Indications 	
 Contraindications 	
 Procedure – we will not cover today as 	
will use the time to ensure	
understanding of ABG interpretation	
 Another area to cover would be causes 	
of metabolic and respiratory	
acidosis/alkalosis	
Is the patient hypoxic?	
PAO2 =FiO2 - (PaCO2/RQ)	
A rough guide would be 10Kpa below inspired O2	
What is the pH?	
A negative logarithmic scale – of hydrogen ion	
concentration in blood. It is a scale that	
measures the acid-base balance in human blood.	
Normal is between 7.35-7.45. In order for cellular	
mechanisms and biological processes to be	
optimum, pH must be tightly controlled	
A pH of 6.0 would have 10 x the number of	
hydrogen ions than a pH of 7.0	
This occurs by means of the respiratory system	
and then renal system	
$H_2O + CO_2 \rightarrow H_2CO_3 \rightarrow HCO_3 + H$	
What is the resp component doing?	
The respiratory system allows exchange of	
carbon dioxide for oxygen. Before carbon dioxide	
reaches lungs is carried in the blood partially	
dissolved as carbonic acid.	
High levels of carbon dioxide leads to high levels	
of carbonic acid and acidaemia.	
Low levels of carbon dioxide leads to alkalaemia	
Normal values	
In Kpa – 4.5-6.0 – or 35-45mmHg	
What is the metabolic component doing?	
The kidneys can excrete acid or generate	
bicarbonate	
HCO3 freely excreted in glomerulus. But	
recaptured mostly in proximal but also distal	
convoluted tubule.	
So kidneys can excrete acid/ammonia but can	
also recapture bicarbonate as required	
High levels of bicarbonate would cause	
alkalaemia	

Low levels of bicarbonate would cause acidaemia	
Normal values	
22-26mmol/L	
Is there any compensation?	
A COPD patient, who retains CO ₂ , may have a	
permanently higher CO2 level than a non COPD	
patient. In order for the body to maintain a	
normal pH the kidneys will capture more	
bicarbonate or excrete more hydrogen in order	
to compensate this chronically high CO ₂	
Conversely, a patient who presents in DKA –	
often have high resp rates – they have a	
metabolic acidosis but are trying to compensate	
physiologically by decreasing CO2	
Other useful information on ABG	
Lactate	
 Potassium 	
Calcium	
Sodium	
 Carboxyhaemaglobin 	
Asks doctor if they have any questions	
Suggests sources to find more information from	
RCEM module	
I have a presentation	
Arranges another time to meet	
Thanks patient	
Thanks doctor	
Patient mark	