GLOBAL MARK			
CLEAR PASS	BORDERLINE PASS	BORDERLINE FAIL	FAIL

Criteria	
Introduces Self, Confirms patient identify, Washes hands	2, 1
Checks comfort level of patient and gains consent for teaching	2, 1
Identifies current level of knowledge of learner	
Sets objectives for the session	
Structure for Ix low Na	
Structure for Mx low Na	
Explains control of Na homeostasis	
Vasopressin (makes serum Na go up by effecting absorption)	
Aldosterone (makes serum Na go up)	
ANP (makes Na go down)	
Explains link of Na to H20	
Outlines structure for dealing with low Na	
What is the osmolality? 2[Na+K]+Gluc+Urea	
Watery (hypotonic), Normal, or Concentrated (Hypertonic)	
Outlines the different types of hypotonic hyponatraemia based on	
volume status	
Hypovolaemia (kidney or other) – renal causes (RTA,	
adrenacorticoid deficiency, ketones), Non renal (vomit, 3 rd	
space, diarrhea, bowel prep	
Euvolemic – psychogenic, hypotonic IVF, adrenal failure,	
hypothyroid	
Hypervolemic – failures kidney, liver, heart	
Explains normal ranges for serum and urine osmolality	
If urine osmolality >100 too much water intake	
If urine Na >30 low effective arterial volume (and kidney not	
scavenging back Na),	
Explains how to use urinary values to help find a cause	
Explains SIADH, and that low Na can cause SIADH as a maladaptive	
response	
Explains also needs to classify based on severity of symptoms and time	
of onset, as short term treatment is based on this rather than the	
cause.	
If Severe symptoms	
Vomit, CV instability, Seizure, Low GCS	
Rx with 150ml 3% in 20 mins	
Repeat twice, until Na up by 5mmol,	
Then start 0.9% aiming to increase by 10mmol in first 24 hours	
If Mild symptoms (nausea, confusion, headache, falls)	
AND chronic – fluid restrict	

AND acute 150mls 3% and re-check	
Checks for questions	
Summarises	
Points out extra learning	
Thanks student	